metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

trans-Bis(benzoato-O)tetrakis-(methanol-O)iron(II): ligand bulk is not structure-determining

Sarah E. McMullen and Karl S. Hagen*

Department of Chemistry, Emory University, 1515 Pierce Drive, Atlanta, GA 30322, USA

Correspondence e-mail: khagen@emory.edu

Received 10 August 2001 Accepted 5 November 2001 Online 22 December 2001

The title compound, $[Fe(C_7H_5O_2)_2(CH_4O)_4]$, is a centrosymmetric six-coordinate Fe^{II} complex coordinated by two axial monodentate benzoate ligands and four methanol ligands in the equatorial plane $[Fe-O_{benzoate} 2.0935 (7) \text{ Å}$, and Fe- $O_{methanol} 2.1310 (7)$ and 2.1290 (7) Å]. The benzoate ligands adopt monodentate ligation, rather than a bridged polymeric structure, because of strong intra- and intermolecular hydrogen bonds to the methanol ligands. This structure is nearly identical to that obtained with a much bulkier carboxylate ligand [Chavez, Que & Tolman (2001). *Chem. Commun.* pp. 111–112].

Comment

A recent report of an Fe^{II} complex having the same core structure as the title compound, (I), but with a bulky trisubstituted benzoate, attributed the atypical structure to the extreme steric bulk of the carboxylate (Chavez *et al.*, 2001). We demonstrate here that the structure can also be obtained using unsubstituted benzoic acid (Fig. 1).

The core geometry in (I) is very similar to that in the complex [Fe(II)₂(MeOH)₄], (III), where (II) is 4-tert-butyl-2,6-bis[2,2",6,6"-tetramethyl-*m*-terphenyl-2'-yl)methyl]phenyl carboxylate. The Fe-carboxylate bonds are slightly shorter in (I) $[Fe-O1 \ 2.0935 \ (7) \ A]$ than in (III) $[2.13 \ (2) \ A]$, while the Fe-methanol bonds are comparable [Fe-O3 2.1310 (7) Å and Fe-O4 2.1290 (7) Å in (I), and 2.162 (2) and 2.091 (2) Å in (III)]. The charge on the benzoate ligand is delocalized over the carboxylate group $[C1-O1 \ 1.260(1)]$ Å and C1-O21.266 (1) Å]. The methanol ligands in (I) are hydrogen bonded to the uncoordinated O atom of the benzoate [intramolecular $O2 \cdots O3 2.623$ (1) Å and intermolecular $O4 \cdots O2^{i} 2.634$ (1) Å (Table 1); symmetry code: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$]. Intermolecular hydrogen bonds link the molecules into layers parallel to the bc plane, and the phenyl rings in adjacent layers are interleaved. The short Fe-O bond in (III) involves the methanol molecule that forms a strong hydrogen bond to the uncoordinated carboxylate O atom $[O \cdots O 2.582 (3) \text{ Å}]$, whereas the

longer bond involves a methanol that forms a weaker hydrogen bond to a solvate methanol [intramolecular $O \cdots O$ 3.199 (3) Å]. This difference can be attributed to the bulky carboxylate in (III).

The most closely related metal–carboxylate complexes with four additional coordinated alcohol ligands are the isomorphous Ca²⁺ and Cd²⁺ complexes of a natural product, griseocheline, from *Streptomyces griseus* (Scharfenberg-Pfeiffer & Czugler, 1991). Each of two tridentate ligands are coordinated to the metal through one carboxylate and two alcohols. However, the complexes have pseudo-twofold symmetry, with a *cis* arrangement of the two carboxylates. More common structures with simpler ligands are generally centrosymmetric with amine donors in the equatorial plane. A related structure is *trans*-bis(4-bromobenzoato-*O*)(2-dimethylaminoethanol-*N*,*O*)copper(II), in which the free O atom on the benzoate forms a hydrogen bond to the coordinated alcohol (Turpeinen *et al.*, 1996). The centrosymmetric

Figure 1

A view of the molecular structure of (I) with 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii and intra- and intermolecular hydrogen bonds are indicated by dotted lines. [Symmetry codes: (A) 1 - x, -y, 1-z; (B) x, $\frac{1}{2} - y$, $-\frac{1}{2} + z$; (C) 1 - x, $-\frac{1}{2} + y$, $\frac{n}{2} - z$ (n = 3 for O4 and n = 1 for O1 and O2).]

structures are also preferred in the Fe^{II} and Co^{II} acetate and trifluoroacetate complexes, $[M(RCOO)_2(NH_2CH_2py)_2]$, with the diamine 2-aminomethylpyridine (Payne, 1998).

Experimental

Compound (I) was crystallized from a methanol solution containing $Fe(BPh_4)_2$ (0.25 mmol), benzoic acid (1.0 mmol) and triethylamine (1 mmol). Crystals of triethylammonium tetraphenylborate, $(Et_3NH)(BPh_4)$, were also isolated from this solution.

Crystal data

$[Fe(C_7H_5O_2)_2(CH_4O)_4]$	$D_x = 1.411 \text{ Mg m}^{-3}$		
$M_r = 426.24$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/c$	Cell parameters from 9801		
a = 9.863 (1) Å	reflections		
b = 12.065 (2) Å	$\theta = 2.7 - 32.9^{\circ}$		
c = 8.605 (1) Å	$\mu = 0.79 \text{ mm}^{-1}$		
$\beta = 101.45 \ (1)^{\circ}$	T = 100 (2) K		
V = 1003.5 (3) Å ³	Block, colourless		
Z = 2	$0.40 \times 0.25 \times 0.15 \text{ mm}$		
Data collection			

Data collection

Bruker SMART APEX CCD area-	2922 independent reflections
detector on D8 diffractometer	2731 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.022$
Absorption correction: multi-scan	$\theta_{\rm max} = 30^{\circ}$
(SADABS; Blessing, 1995; Shel-	$h = -13 \rightarrow 13$
drick, 2001)	$k = -16 \rightarrow 16$
$T_{\min} = 0.79, \ T_{\max} = 0.89$	$l = -12 \rightarrow 12$
11 390 measured reflections	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0495P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.027$	+ 0.2157P]
$wR(F^2) = 0.078$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
2922 reflections	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	

The H-atom parameters were freely refined, giving C-H = 0.86 (3)-0.98 (2) Å and $U_{iso} = 0.029$ (4)-0.10 (1) Å².

Table 1

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H1···O2	0.82 (2)	1.83 (2)	2.623 (1)	161 (2)
$O4-H2\cdots O2^{i}$	0.82 (2)	1.83 (2)	2.634 (1)	166 (2)
Summa atom and a (i)	. 1 1			

Symmetry code: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART* and *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

We acknowledge the National Science Foundation (grant No. CHE-9974864) for funds to purchase the diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1620). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chavez, F. A., Que, L. Jr & Tolman, W. B. (2001). Chem. Commun. pp. 111–112.
- Payne, S. C. (1998). PhD thesis, Emory University, USA.
- Scharfenberg-Pfeiffer, D. & Czugler, M. (1991). Pharmazie, 46, 781-783.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
- Turpeinen, U., Klinga, M., Mutikainen, I. & Hamalainen, R. (1996). Z. Kristallogr. 211, 261–262.